Instrumenting an Advanced Workflow

THE INFORMATION IN THIS ARTICLE APPLIES TO:

. EFT v7.4.x and later

DISCUSSION

In software development, instrumentation refers to the measure of a product's
performance, to diagnose errors, and to write trace information. When an application
contains instrumentation code, it can be viewed using a management tool. This
knowledgebase article describes how to instrument your Advanced Workflow code to
measure its performance.

Sometimes it is necessary to measure the performance of sub-sections of an advanced
workflow, either to baseline a complex workflow’s performance at key steps, or to
benchmark a modified workflow’s steps against its baseline values, or to troubleshoot poorly
performing workflows when trying to identify which steps are causing the performance
slowdown.

Out of the box, you can observe the Advanced Workflow logs or EFT's ARM logs to see
workflow start and stop times. With debug enabled for a given workflow, you can even see
start times for a given step; however, these do not make it easy to measure elapsed time
over a series of related steps or gauge the effects on the system while those steps were
occurring.

The following approach can be used to audit a series of performance metrics to a log file,
which you can later ingest and analyze in Excel. The solution is to sandwich the steps you
want to measure between a Start and Stop Timer, while also using the Processes > Get
Process Information action to record critical information such as memory utilization, user
processor time, handle count, and more.

The output after multiple runs could look something like this:

A B C D E F G H | J K L
DateTime ElapsedTime ID Handle WorkingSet64 HandleCount PrivilegedProcessorTime Threads_Count TotalProcessorTime UserProcessorTime WorkingSet6d4 PrivateMemorySize64
2:55:46 4.531534 5892 2736 74448896 668 00:00.3 24 00:01.7 00:01.4 74443896 63501696
2:55:46 4.765931 5892 2720 74924032 669 00:00.3 24 00:01.7 00:01.5 74924032 64225280
cen an

::::::: £ 1nncATn conn ~7en EITTPTI S AnAn 3 AnA T AnAt A Tananann canaTenn

Armed with this information, you can compare elapsed times and changes to memory over
each successive run. You can even chart out a given set of records to visually analyze the

Instrumenting an Advanced Workflow
data:

ElapsedTime
30

s | *
20

15 =
®s

. = . .
4 ‘ i..z...‘r. . FE .~~‘ .!t :.‘ﬁ. .:.. .ﬁ - .‘.. .\... O....

10]

LY -

0 200 400 600 800 1000 1200 1400 1600 1800
WorkingSet64
50000000
B0000000 ° ° ®)
[] L) - e - o
:o O ;. L 2 TR a0 ; e
WW Py AN S R Y,
70000000 - % . '] H H
60000000
50000000
40000000
30000000 .
2
20000000
10000000
L]
0
[200 400 500 800 1000 1200 1400 1600 1800

With data from multiple runs in hand, you can spot anomalous behavior or even potential
problems, such as this memory leak (right chart below), which occurred after looping over a
file and offloading it to a remote system over SFTP. Notice that the elapsed times are
consistent, but if this loop had continued to run over a long period it still may have resulted
in an out-of-memory error!

<

Instrumenting an Advanced Workflow

To instrument your code, find the section you want to measure, such as a set of operations
that query a database or perform a series of critical functions. Then, set these variables
right before that section or at the top of your code where you declare your variables (switch
to AML mode and paste in the below):

<AMVARIABLE NAME="ElapsedTime" VALUE="0" />
<AMVARIABLE NAME="ThisMoment" VALUE="0" />

The others will be used for capturing different time factors: ThisMoment is the date and time
which you will apply as a timestamp to each log entry. Elapsed time is the time in seconds it
took to run the section of code you are concerned with measuring.

Next, right above the steps you want to measure, add the following:

<AMTIMER SESSION="TimerSession1" />

Then, add the following after the steps you want to measure:

<AMTIMER SESSION="TimerSessionl1" />

This step will retrieve the Process information for the "GSAWE" runtime and populate the
results in a dataset (a special variable that holds an array of data, akin to a table). Note
that you cannot run this task from within the task builder, as GSAWE will only execute when
EFT runs the task from one if its event rules. Also note that if you are testing many parallel
runs of a given workflow, you might have some difficulty distinguishing between AWE tasks
in the output log, unless you add the PID value for that process.

Next, stop the timer:

<AMTIMER ACTIVITY="stop" RESULTVARIABLE="ElapsedTime" SESSION="TimerSession1"
/>

Now add a time formatter, so that ThisMoment is formatted to your liking:
<AMTEXT ACTIVITY="format_datetime" RESULTVARIABLE="ThisMoment"
DATETIMEFORMAT="h:mm:ss" />

As the final step, you will want to write the captured information to a log file. Here I've
selected to write a file to my C drive, using a comma as the delimiter for each variable and
dataset element that I desire (these present a subset of all those available to the Process
dataset):PREVIEW

https://kb.globalscape.com/Knowledgebase/11532/Instrumenting-an-Advanced-Workflow?Update=1

Instrumenting an Advanced Workflow

<AMFILESYSTEM ACTIVITY="write_file"
FILE="c:\output.csvt">%ThisMoment%,%ElapsedTime%,%proccessinfo.id%),%proccessinfo.hanc

And that’s it. Now when EFT runs my workflow, the Output.csv file will be appended with a
new row. You can open that file in Excel and analyze the results.
Sample.aml:

<AMVARIABLE NAME="ElapsedTime" VALUE="0" />

<AMVARIABLE NAME="ThisMoment" VALUE="0" />

<AMTIMER SESSION="TimerSessionl" />

<AMPROCESSES PROCESSNAME="AMTB.exe" RESULTDATASET="proccessinfo" />

<!-- Action to be measured --> -->

<AMWAIT SCALAR="2" />

<!-- Action to be measured -->

<AMTIMER ACTIVITY="stop" RESULTVARIABLE="ElapsedTime" SESSION="Timer Sessionl" />

<AMTEXT ACTIVITY="format_datetime" RESULTVARIABLE="ThisMoment"
DATETIMEFORMAT="h:mm:ss" />

<AMFILESYSTEM ACTIVITY="write_file"
FILE="c:\output.csv">%ThisMoment%,%ElapsedTime%,%proccessinfo.id%,%proccessinfo.handle%,%pro

Caveats

Performance measurements should always be taken in a non-production system in a
well-controlled environment, to eliminate variances introduced by constantly shifting
dependent variables you would typically experience in a chaotic production system.

Furthermore, even if running in an isolated test environment, careful attention should be
paid to any differences introduced to independent variables between test runs. For example,

Instrumenting an Advanced Workflow

if you are testing SFTP performance between two versions of the product, but one version
defaults to using a different symmetric key cipher, then you have now modified two
independent variables, and more than likely have invalidated any conclusions reached by
observing the dependent variables after each test run.

GlobalSCAPE Knowledge Base
https://kb.globalscape.com/Knowledgebase/11532/Instrumenting-an-Advanced-Wo...

https://kb.globalscape.com/Knowledgebase/11532/Instrumenting-an-Advanced-Workflow

