
March 9, 2011 GlobalSCAPE, Inc. Robert Oslin

FOLDER SWEEP

OVERVIEW

A common use of EFT Server’s Folder Monitor rule is to detect files and move them to a different location on the
network for processing. Mission critical operations require all files to be processed, even those missed due to a
temporary network outage or other error. Below is a diagram showing how EFT Server’s folder monitor works and
the potential for missing a file:

00:33

Network Loses Connection

2/28/2011 - 2/28/2011

Interval between failure

and detection of failure

00:15

Health Check

00:30

Health Check

00:45

Health Check

00:45:20

Failure event trigger

00:45 - 00:55

Attempt connection

00:55

Connection Restablished

00:33 - 00:55

Deposited files missed during this period

00:37

File deposited

00:23

File Deposited
00:58

File Deposited00:00

Start monitoring

CHART EXPLAINED:

1. Folder monitor started at 0:00.

2. First health check
1
 at 0:15.

3. File deposited at 0:23 and is processed by EFT Server.

4. Network connection lost at 0:33.

5. File deposited (and missed!) at 0:37.

6. Second health check at 0:45.

7. Failure event thrown at 0:45:20

8. A second attempt to re-establish connection succeeds at 0:55.

9. File deposited at 0:58 gets processed.

GOAL:

Sweep all files in the monitored folder regardless of when deposited (i.e., process ALL files).

1
 All files deposited between minute 0:33 and 0:55 are missed. The potential gap is broader; that is, immediately after the last health check,

until the next health check, plus 20 seconds.

March 9, 2011 GlobalSCAPE, Inc. Robert Oslin

MOVE USING WILDCARDS APPROACH – NOT RECOMMENDED

This approach is commonly attempted, but may result in unpredictable behavior. The approach consists of doing a
MOVE operation and using a wildcard mask, such as *.* for the local file source path, rather than the default
%FS.PATH% argument provided when creating the Move action:

This approach doesn’t work consistently due to the asynchronous nature of how Folder Monitor creates threads
for each file deposited into the monitored folder. For example, if you drag 100 files into a monitored folder, up to
100 threads will attempt the move *.* operation, all within milliseconds of each other.

Thread 4 Thread 21Destination Destination

Read A.dat

From disk

Delete A.dat on remote

A.Dat

deleted
Done

Copy A.dat to remote

A.dat write

to disk
Done

Delete A.dat

Read A.dat From disk

Delete A.dat on remote

Done

A.Dat

deleted

Thread 21 may start execution

a few seconds later depending on

current folder monitor thread pool

T
IM

E

A.dat was already deleted by thread 4!

Destination file also deleted.

Result is missing destination and source!

Copy A.dat fails

as file not find!

Before the Move action copies the source file to the destination, the action determines whether the source file
exists in the destination and, if so, deletes the file in the target location. Next, the action copies the source file to
the destination, and then deletes the source (original) file.

If the timing of multiple threads is just right, it is possible for one thread (thread 21 above) to delete the
destination file that corresponds to another thread’s source file (thread 4 above) that was just uploaded. In that
case, when thread 21 attempts to copy the source file to the destination, it fails, because Thread 4 already deleted
the file at the end of its operation. The disastrous result is the complete removal of both source AND destination
files!

In EFT Server 6.3, you could mitigate this risk by choosing “Skip” rather than “Overwrite” for matching filenames
overwrite logic, but then you wouldn’t be able to use the overwrite logic choices as they were originally designed.

March 9, 2011 GlobalSCAPE, Inc. Robert Oslin

COPY USING WILDCARDS APPROACH – NOT RECOMMENDED

This approach is sometimes attempted instead of the Move operation:

This method should not result in arbitrarily deleted files, but can adversely affect performance, because each copy
operation is duplicated for matching masks across all files deposited into the folder.

For example, if you drop 1000 files into a folder, then copy *.* will occur more than 1,000 times, resulting in one
million atomic file copy operations.

SEPARATE TIMER RULE FOR CLEANUP – NOT RECOMMENDED

Some users deploy a secondary Event Trigger consisting of a Timer rule that runs on a recurring basis, sweeping
the folder for any remaining files. This approach is also problematic in that a Timer rule could execute at virtually
the same time as when files were deposited in the folder, resulting in a race condition with the folder monitor rule,
which is essentially the same problem experienced in the Move Action example (using wildcards) discussed
previously.

Timer Folder Monitor

Sweep

00:00

File deposited

1:30

T
IM

E

Race condition!

Sweep

00:30

Sweep

1:00

Sweep

1:30

File deposited

1:30

Another shortcoming to this approach is that you would need a separate Timer rule for each Folder Monitor rule.

March 9, 2011 GlobalSCAPE, Inc. Robert Oslin

SEPARATE AND BLOCK ON MOVE ACTION – RECOMMENDED

This approach places the Move operation into a separate rule that is invoked via EFT Server’s Web Services. Prior
to moving the files, a lock is obtained on a temporary file so that only a single Timer rule thread can perform the
Move action. The diagram below (which merges script and timer operations for clarity) demonstrates this
approach.

Folder Monitor
Timer

(static)

File(s) deposited

Obtain a lock

T
IM

E

Destination

Web service invoke of a

static timer rule

Move *.*

Done

Release lock

STEPS:

1. Create a Custom Command that will run cscript.exe, which will execute a script to obtain the lock and
then execute the Timer rule via web services:

March 9, 2011 GlobalSCAPE, Inc. Robert Oslin

2. Next, enable HTTP or HTTPS and Web Services on the Site:

3. Now copy the below script into your text editor and save it as webservice2.vbs to your C: drive (or choose
an alternate name/destination and edit the script accordingly):

Dim oArgs: Set oArgs = WScript.Arguments

Dim strURL, strAdminUserName, strAdminPassword, sLckFile

Dim strResponseValue, xmlhr, strWSParams, strFileName, strRemoteFileName, strRuleName

Const ForAppending = 8

If(oArgs.count < 2) Then

 'missing input arguments

 WSCript.Echo("ERROR: Incorrect number of parameters passed! [Number of arguments

passed : " & oArgs.count &"]")

 WSCript.Echo("ERROR: Usage: cscript webservice2.vbs source_path

destination_folder")

 Call WSCript.Echo(-1)

Else

 strFileName = trim(oArgs(0))

 strRemoteFileName = trim(oArgs(1))

End If

'Variables

sLckFile = "c:\file.lock"'change location if desired

strURL = "http://192.168.101.115/WebService/InvokeEventRule"'you MUST change the URL to match

your server host address

strAdminUserName = "admin"'you MUST change this to match your admin credentials

strAdminPassword = "test"'you MUST change this to match your admin credentials

strResponseVaule =""

strRuleName = "WS_UPLOAD" 'only change if you gave the static timer rule a name other than

"WS_UPLOAD"

Set oFSO = CreateObject("Scripting.FileSystemObject")

'Now get file lock

bUpdFinished = False

iLoops = 0

On Error Resume Next

Do

'open for appending

Set f = oFSO.OpenTextFile(sLckFile, ForAppending, True)

If Err.Number = 70 Then

'Permission denied error

' Waiting 1/2 a second before trying again

' Other threads will block here

WScript.Sleep 500

ElseIf Err.Number <> 0 then

'WScript.Echo "Unexpected Error #: " & Err.Number

bUpdFinished = True

Else

On Error GoTo 0

'Do the job here, the file will now be locked by this script and

'nobody else will be able to continue until the f.Close instruction

'WScript.Echo "Got the lock" - processing file(s)

'###################Don't change anything below unless you know what you are

doing####################

strWSParams = "EventRuleName=" & strRuleName & "&EventParams=FILENAME=" &strFileName &

";DESTFOLDER=" &strRemoteFileName

'MsgBox "strWSParams= " &strWSParams

Set xmlhr = CreateObject("MSXML2.ServerXMLHTTP.3.0") 'earlier versions don't support setOption

 If Not (xmlhr Is Nothing) Then

March 9, 2011 GlobalSCAPE, Inc. Robert Oslin

 'xmlhr.setProxy 2, "localhost:8888", "" 'only edit if need to go through proxy

 xmlhr.setOption 2, SXH_SERVER_CERT_IGNORE_ALL_SERVER_ERRORS ' ignore cert errors or

other desired options. Won't work with XMLTTHP, requires ServerXMLHTTP

 xmlhr.Open "POST", strURL, False, strAdminUserName, strAdminPassword

 xmlhr.setRequestHeader "Content-Type", "application/x-www-form-urlencoded"

 xmlhr.setRequestHeader "User-Agent", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; AWE-xmlhttp;)"

 'MsgBox "We are going to make a request to : " & vbCrLf & strURL & vbCrLf & "With :

username = " & strAdminUserName & vbCrLf & "Password: " & strAdminPassword & vbCrLf & "Params:" &

vbCrLf & strWSParams

 xmlhr.Send(strWSParams)

 'MsgBox "responseText = '" & xmlhr.responseText & "'" & vbCrLf & "responseXML = '"

& xmlhr.responseXML.xml & "'"

 strResponseValue = xmlhr.responseText

 'MsgBox "Response Is: " & vbCrLf & strResponseValue

 Dim iPos

 Dim iPos2 ' Parse the return code from the Web Service. I chose this over XML for

simpler readability, but XPATH could also be used.

 iPos = InStr(1, strResponseValue, "<int")

 If (iPos > 0) Then

 ' MsgBox "Found '<int' at position " & CStr(iPos) & " ('" & Mid(

strResponseValue, iPos) & "')..."

 iPos = InStr(iPos + 1, strResponseValue, ">")

 If (iPos > 0) Then

 ' MsgBox "Found '>' at position " & CStr(iPos) & "('" & Mid(strResponseValue,

iPos) & "')..."

 iPos2 = InStr(iPos+1, strResponseValue, "<")

 If (iPos2 > 0) Then

 ' MsgBox "Found '<' at position " & CStr(iPos2) & "('" & Mid(

strResponseValue, iPos2) & "')..."

 strResponseValue = Mid (strResponseValue, iPos +1, iPos2 - iPos-1)

 End If

 End If

 End If

 End If

'MsgBox "Response Code: " & strResponseValue

'release the lock

'WScript.Echo "Release the lock"

f.Close

bUpdFinished = True

End If

Err.Clear

Loop Until bUpdFinished

On Error GoTo 0

Wscript.quit

Please do not forget to modify the following variables in the script to match your environment:

 strAdminUserName, which is the admin account name that will invoke web services

 strAdminPassword = password for the above account

 strURL = EFT Server’s host address and web services path.

Optional variables include:

 strRuleName = only change if you change the name of the timer rule created in step 5 below.

 sLckFile = Only change if you want to create the lock file in another location.

(Note: When copying text from one document to another, unwanted characters are often copied with it. Please
review the text after you paste it, comparing it with the script above. You might also need to edit values in the
script to suit your environment.)

March 9, 2011 GlobalSCAPE, Inc. Robert Oslin

4. Create or modify your existing folder monitor rule so that it calls the custom command and passes in the
path to be processed (along with wildcard mask) and the destination folder. You can hard code these
values or use static values:

5. Create a Timer rule named “WS_UPLOAD” (if you choose a different name then you must modify the
webservice2.vbs script), and set the Run value to “Once” and the Start Date value to a date in the past.

6. Add a Copy/Move operation, select “LAN” as the offload method, type %FILENAME% in the source path,
and type %DESTFOLDER% in the destination path. (Note: Any modifications to these values must also be
made in the webservice2.vbs script):

7. Now you are ready to test. You can test by dragging a few files into the monitored folder (matching the
mask provided) or you can call the webservice2.vbs script directly from the command line. For example:

C:\cscript.exe webserivce2.vbs "source_path*.* " "destination_folder"

(Uncomment the msgbox or wscript.echo commands to troubleshoot, if necessary.)

Now when the Folder Monitor executes due to a file being deposited, the separate, blocking static Timer
rule will move (sweep) all files in the monitored folder, including those deposited during periods where
the folder monitor missed files (see top), guaranteeing that all files will be processed.

Disclaimer: The information contained within this document, including steps, techniques,

recommendations, screenshots, and sample source code is provided "AS IS". The contributing

author and GlobalSCAPE, Inc. disclaim all warranties, expressed or implied, including,

without limitation, the warranties of merchantability and of fitness for any purpose. The

contributing author and GlobalSCAPE, Inc. assume no liability for direct, indirect,

incidental, special, exemplary, or consequential damages, which may result from the use of

this information or the techniques provided, even if advised of the possibility of such

damage. This information is provided for educational purposes only, and is not supported,

maintained, or otherwise endorsed by the contributing author or GlobalSCAPE, Inc.

	Overview
	Goal:
	Move using wildcards approach – Not Recommended
	COPY using wildcards approach – Not Recommended
	Separate Timer Rule for Cleanup – Not Recommended
	Separate and Block on Move Action – Recommended
	Steps:

